Aimants en samarium-cobalt-Sm 2 Co 17
Composé de samarium et de cobalt avec un rapport atomique de 2:17
Les aimants samarium-cobalt 2:17, encore appelés aimants Sm2Co17, constituent un matériau magnétique haute performance à base de samarium, de cobalt, de cuivre, de fer et de zirconium par le biais de processus de fusion, de broyage, d'emboutissage, de frittage et de vieillissement. Dotés d'une performance énergétique maximale comprise entre 17 et 35 MGOe et d'une température de fonctionnement élevée allant de 250℃ à 500℃, les aimants Sm2Co17 bénéficient d'une remarquable résistance à la corrosion et d'un faible coefficient de température, ce qui les rend parfaitement adaptés à de nombreuses applications dans les domaines de l'aérospatiale, des moteurs à haute température, des capteurs automobiles, des entraînements magnétiques, des pompes et des appareils à micro-ondes.
Malgré ses caractéristiques exceptionnelles, le Sm2Co17 est fragile et ne se prête pas facilement à la réalisation de formes complexes ou de formes à parois minces, telles que des disques ou des anneaux ronds. Le processus de production peut provoquer de légères ébréchures, ce qui est admissible tant que cela n'affecte pas la fonctionnalité de l'aimant. Nous invitons les utilisateurs à manipuler l'aimant avec précaution lors de l'assemblage afin de ne pas entraîner l'attraction de fer ou d'autres matériaux magnétiques, ce qui pourrait provoquer des cassures ou des blessures.
De plus, il n'est pas aisé de saturer et de magnétiser les aimants 2:17. Si vous devez magnétiser vous-même les aimants, il est primordial de tenir compte de l'intensité du champ magnétique du magnétiseur et de veiller à choisir la qualité appropriée.
Matériaux | Classe | Br Rémanence Br | Hcb Force de coercivité | Hcj Coercivité intrinsèque | (BH) max Énergie maximale | Tc Température de Curie | Tw Température de fonctionnement max. | Coefficient de température de Br α(Br) | Coefficient de température de Hcj β(Hcj) | ||||
T | KGs | KA/m | KOe | KA/m | KOe | KJ/m3 | MGOe | ℃ | ℃ | %/℃ | %/℃ | ||
Sm2(CoFeCuZr)17 | YXG-24H | 0.95-1.02 | 9.5-10.2 | 692-764 | 8.7-9.6 | ≥1990 | ≥25 | 175-191 | 22-24 | 800 | 350 | -0.035 | -0.20 |
YXG-26H | 1.02-1.05 | 10.2-10.5 | 748-796 | 9.4-10.0 | ≥1990 | ≥25 | 191-207 | 24-26 | 800 | 350 | -0.035 | -0.20 | |
YXG-28H | 1.03-1.08 | 10.3-10.8 | 756-812 | 9.5-10.2 | ≥1990 | ≥25 | 207-223 | 26-28 | 800 | 350 | -0.035 | -0.20 | |
YXG-30H | 1.08-1.10 | 10.8-11.0 | 788-835 | 9.9-10.5 | ≥1990 | ≥25 | 223-239 | 28-30 | 800 | 350 | -0.035 | -0.20 | |
YXG-32H | 1.10-1.13 | 11.0-11.3 | 812-860 | 10.2-10.8 | ≥1990 | ≥25 | 231-255 | 29-32 | 800 | 350 | -0.035 | -0.20 | |
YXG-33H | 1.12-1.16 | 11.2-11.6 | 845-890 | 10.6-11.2 | ≥1990 | ≥25 | 239-263 | 30-33 | 800 | 350 | -0.035 | -0.20 | |
YXG-22 | 0.93-0.97 | 9.3-9.7 | 676-740 | 8.5-9.3 | ≥1433 | ≥18 | 160-183 | 20-23 | 800 | 300 | -0.035 | -0.20 | |
YXG-24 | 0.95-1.02 | 9.5-10.2 | 692-764 | 8.7-9.6 | ≥1433 | ≥18 | 175-191 | 22-24 | 800 | 300 | -0.035 | -0.20 | |
YXG-26 | 1.02-1.05 | 10.2-10.5 | 748-796 | 9.4-10.0 | ≥1433 | ≥18 | 191-207 | 24-26 | 800 | 300 | -0.035 | -0.20 | |
YXG-28 | 1.03-1.08 | 10.3-10.8 | 756-812 | 9.5-10.2 | ≥1433 | ≥18 | 207-223 | 26-28 | 800 | 300 | -0.035 | -0.20 | |
YXG-30 | 1.08-1.10 | 10.8-11.0 | 788-835 | 9.9-10.5 | ≥1433 | ≥18 | 223-239 | 28-30 | 800 | 300 | -0.035 | -0.20 | |
YXG-32 | 1.10-1.13 | 11.0-11.3 | 812-860 | 10.2-10.8 | ≥1433 | ≥18 | 231-255 | 29-32 | 800 | 300 | -0.035 | -0.20 | |
YXG-33 | 1.12-1.16 | 11.2-11.6 | 845-890 | 10.6-11.2 | ≥1433 | ≥18 | 239-263 | 30-33 | 800 | 300 | -0.035 | -0.20 | |
YXG-35 | 1.16-1.2 | 11.6-12.0 | 868-908 | 10.9-11.4 | ≥1433 | ≥18 | 255-278 | 32-35 | 800 | 300 | -0.035 | -0.25 | |
YXG-26M | 1.02-1.05 | 10.2-10.5 | 676-780 | 8.5-9.8 | 955-1433 | 12-18 | 199-215 | 25-27 | 800 | 300 | -0.035 | -0.20 | |
YXG-28M | 1.03-1.08 | 10.3-10.8 | 676-796 | 8.5-10.0 | 955-1433 | 12-18 | 207-220 | 26-28 | 800 | 300 | -0.035 | -0.20 | |
YXG-30M | 1.08-1.10 | 10.8-11.0 | 676-835 | 8.5-10.5 | 955-1433 | 12-18 | 220-240 | 28-30 | 800 | 300 | -0.035 | -0.20 | |
YXG-32M | 1.10-1.13 | 11.0-11.3 | 676-852 | 8.5-10.7 | 955-1433 | 12-18 | 230-255 | 29-32 | 800 | 300 | -0.035 | -0.20 | |
YXG-24L | 0.95-1.02 | 9.5-10.2 | 541-716 | 6.8-9.0 | 636-955 | 8-12 | 183-199 | 23-25 | 800 | 250 | -0.035 | -0.20 | |
YXG-26L | 1.02-1.05 | 10.2-10.5 | 541-748 | 6.8-9.4 | 636-955 | 8-12 | 199-215 | 25-27 | 800 | 250 | -0.035 | -0.20 | |
YXG-28L | 1.03-1.08 | 10.3-10.8 | 541-764 | 6.8-9.6 | 636-955 | 8-12 | 207-220 | 26-28 | 800 | 250 | -0.035 | -0.20 | |
YXG-30L | 1.08-1.15 | 10.8-11.5 | 541-796 | 6.8-10.0 | 636-955 | 8-12 | 220-240 | 28-30 | 800 | 250 | -0.035 | -0.20 | |
YXG-32L | 1.10-1.15 | 11.0-11.5 | 541-812 | 6.8-10.2 | 636-955 | 8-12 | 230-255 | 29-32 | 800 | 250 | -0.035 | -0.20 | |
Coefficient à basse température 2:17 (SmEr)2(CoTm)17 | LTC(YXG-18) | 0.84-0.89 | 8.4-8.9 | 629-668 | 7.9-8.4 | ≥1433 | ≥18 | 135-151 | 17-19 | 840 | 300 | -0.001 | -0.25 |
LTC(YXG-20) | 0.89-0.94 | 8.9-9.4 | 660-708 | 8.3-8.9 | ≥1433 | ≥18 | 151-167 | 19-21 | 840 | 300 | -0.007 | -0.25 | |
LTC(YXG-22) | 0.94-0.98 | 9.4-9.8 | 692-740 | 8.7-9.3 | ≥1433 | ≥18 | 167-183 | 21-23 | 840 | 300 | -0.01 | -0.25 | |
SmCo à haute température Sm2(CoFeCuZr)17 | HT400(YXG-26) | 0.99-1.04 | 9.9-10.4 | 740-812 | 9.3-10.2 | ≥1830 | ≥23 | 191-215 | 24-27 | 850 | 400 | -0.035 | -0.12 |
HT450(YXG-24) | 0.96-0.99 | 9.6-9.9 | 724-772 | 9.1-9.7 | ≥1830 | ≥23 | 175-199 | 22-25 | 850 | 450 | -0.035 | -0.12 | |
HT500(YXG-22) | 0.93-0.97 | 9.3-9.7 | 708-756 | 8.9-9.5 | ≥1830 | ≥23 | 160-183 | 20-23 | 850 | 500 | -0.035 | -0.12 | |
Calcul des valeurs théoriques de Br et Hcj à haute température | Les coefficients de température de la rémanence Br et de la coercivité intrinsèque Hcj sont mesurés entre 20°C et 150°C, et servent uniquement à titre indicatif. Formule de calcul théorique (T1 = température ambiante (généralement 20℃), T2=haute température) : Br@T2=Br@T1-[(T2-T1)*α(Br)*Br@T1] Hcj@T2=Hcj@T1-[(T2-T1)*β(Hcj)*Hcj@T1] Taking YXG-28H, Br=1.03T, Hcj=1990KA/m comme exemple, la valeur théorique à 150℃ est calculée comme suit : Br@150℃=1.03-[(150-20)*0.035%*1.03]=0.9831T Hcj@150℃=1990-[(150-20)*0.2%*1990]=1472KA/m | ||||||||||||
Remarques : 1) Il peut y avoir une petite erreur pendant le test de performance magnétique, mais le taux d'erreur est inférieur à 1 %. Dans la mesure où la coulée brute n'est pas entièrement inspectée, les indices de performance de toutes les qualités présenteront des écarts distincts. Prenons l'exemple la qualité YXG-30, Br=10.8-11.0KGs (parmi lesquels il peut y avoir moins de 5% de la gamme de performance entre10.75-11.04KGs). 2) La température maximale de fonctionnement est étroitement liée à l'environnement de travail concerné, à la bobine de charge et à d'autres facteurs. 3) Les progrès technologiques peuvent entraîner une modification de l'indice de performance. Veuillez vous référer à la dernière version de la fiche de caractéristiques du NGYC. |
Article | Unité | Aimant Sm2Co17 |
Densité (D) | G/Cm3 | 8.4 |
Température de Curie (Tc) | K | 1100 |
Dureté Vickers (Hv) | MPa | 550-600 |
Résistance à la compression (δc) | MPa | 800 |
Résistivité (ρ) | Ω.Cm | 8~9×10-5 |
Résistance à la flexion (δb) | Mpa | 130-150 |
Résistance à la traction (δt) | Mpa | 35 |
Coefficient de dilatation thermique (α) | (10-6/℃) | ∥ 8 ⊥11 |
Veuillez noter que les données ci-dessus sont fournies à titre indicatif uniquement et ne doivent pas être considérées comme la seule base pour l'acceptation ou le rejet d'un produit.